# ENDOVASCULAR NEUROSURGERY

MICHAEL HOROWITZ, MD, FAANS, CAST

### Procedures Performed

- Interventional Procedures
  - Balloon test occlusions
  - Vessel sacrifice and embolization
  - Tumor and AVM embolization-cranial and spine
  - Aneurysm embolization with and without stents
  - Extracranial angioplasty and stenting
  - Intracranial angioplasty and stenting
  - Sclerotherapy
  - Wada testing
  - Petrosal sinus sampling
  - Thrombolysis (arterial and venous)
  - CBF augmentation (Neuroflo)

### TUMOR EMBOLIZATION (VIDEO)

# **Tumor Embolization**





### JNA Tumor









# **Tumor Blush Pre-Embolization**





# Meningioma Embolization



# Tumor Embolization-Glomus Pre Embo Post Embo





#### Tumor Embolization-Glomus Pre Embo Post Embo



#### Glomus Vagale Embo











#### Tumor encased vessels- carotid sacrifice post TBO





### INFERIOR PETROSAL SINUS AMPLING FOR CUSHING'S DISEASE (VIDEO)

# **Embolization For Epistaxis**



### ARTERIOVENOUS MALFORMATION EMBOLIZATION (VIDEO)

# **AVM Pre-Operative Embolization**



# **AVM Pre-Operative Embolization**



#### AVM Embo-PVA/Coils







### AVM EMBOLIZATION

#### • Onyx 18 AVM Embolization





### AVM EMBOLIZATION

• Onyx 18 AVM Embolization





# Distal PCA Sacrifice for Traumatic Aneurysm



# Embolization Facial A-V Fistula Post GSW



# Embolization Facial A-V Fistula Post GSW







# Vertebral Artery Sacrifice



# Vertebral Sacrifice For Dissection



### STROKE THROMBECTOMY (VIDEO)

# MCA Embolus UK-Thrombolysis





#### Cardiogenic ICA Embolus





#### Cardiogenic ICA Embolus Cross-filling





Cardiogenic ICA Embolus During Thrombolysis



#### Cardiogenic ICA Embolus Post UK Thrombolysis






## Carotid-Cavernous Fistula



## Carotid-Cavernous Fistula



# Carotid-Cavernous Fistula



# SSS Thrombolysis



### ANEURYSM COILING VIDEO







# GDC Giant Aneurysm











#### Acomm Aneurysm - SAH/IVH



## Acomm Aneurysm







### **Acomm Aneurysm - GDC Coiling**

### L Obl. Pre GDC

### L Obl. Post GDC



## Stenting Pseudoaneurysm





### Dural AVF embo with GDC



### **Trial Balloon Occlusion**



# Vasospasm Balloon Angioplasty





# Vasospasm Angioplasty





### **Basilar Occlusion/Stenosis**

Lateral





### Basilar Occlusion Lateral L ICA



Basilar Thrombolysis S/P 550K U urokinase





Basilar Angioplasty/Stent S/P 3 x 13mm ACS Multilink





## **Basilar Stenosis**



### **Basilar Stenosis**

### Axial FLAIR MRI

#### **3D TOF MRA**



## **Basilar Angioplasty/Stenting**



## **Basilar Angioplasty/Stenting**

#### Pre-stent

### Post AVE gfx 3x8mm





## REVASCULARIZATION OCCLUDED CAROTID ARTERY VIDEO

# Carotid Stenting



# **Carotid Stenting**





## Carotid Atherosclerotic Disease

- Asymptomatic Disease
  - VA CSP 167 (1992):
    - 50% stenosis or greater
    - Surgery reduced subsequent ipsilateral transient neurological events but not mortality or stoke rate
  - ACAS (1995):
    - 60% stenosis or greater
    - Median F/U 2.7 years
    - 5 year risk for ipsilateral stroke or perioperative stroke or death was 5.1% with surgery and 11.0% for medical therapy if perioperative morbidity and mortality was less than 3%
- NASCET exclusions of high risk patients
  - Age greater than 79
  - Heart, liver, kidney, or lung failure
  - Intracranial lesion more severe than surgically accessible one
  - Cancer likely to cause death within 5 years
  - Cardiac valvular disease or rhythm disorder likely to be associated with cardioembolic stroke
  - Previous ipsilateral CEA
  - Angina or MI, uncontrolled HTN, DM within the previous 6 months
  - Progressive neurologic signs
  - Contralateral CEA within 4 months
  - A major surgical procedure within 30 days

- Symptomatic Disease
  - NASCET (1991)
    - n = 328 surgical cases
    - 70-99% stenosis
    - Benefits within 2 years were:
      - 17% for ipsilateral stroke
      - 15% for all strokes
      - 16.5% for combined outcome of stroke and death
      - 10.6% for major ipsilateral stroke
      - 9.4% for all major strokes
      - 10.1% for major stroke and death

- Indications and risks for CEA in the elderly, infirm, previously operated upon patient are unknown
  - The published mortality rate in NASCET was 0.6% while the mortality rate for Medicare patients undergoing CEA during the same period was 3%
  - Diabetic patients undergoing CEA have greater than 10% postoperative morbidity and mortality rates
  - Risk of stroke or death with combined CEA and CABG is
    7.4 9.4%
  - 14.3% risk or perioperative stroke or death with CEA in the presence of a contralateral carotid artery occlusion (NASCET)

#### **NASCET Complication Rates**

- Perioperative morbidity and mortality (30d)
  - Stroke (5.5%)
    - 12 minor (3.6%), 5 major (1.5%), 1 fatal (1.5%)
  - Stroke and death (5.8%)
  - Major stroke and death 2.1% and fatality 0.6%
  - Cranial nerve injury 7.6%
  - Infection 3.4%
  - Hematoma 5.5%
  - MI 0.9%
  - CHF 0.6%

- Restenosis (defined as 50%) rates for CEA as detected by Doppler US was 10% in first year, 3% in second year, and 1% in third year
- Repeat CEA for restenosis has at least a 10% complication rate especially related to lower cranial nerve injury

#### Carotid stenting

- Diethirch, et al (1996)
  - 110 patients, 117 vessels
  - Greater than 75% stenosis (mean 86.5%)
  - 72% symptomatic
  - 99% technical success
  - 7 strokes (6%) (2 major [2%], 5 reversible [4%])
  - 1 death (0.9%)
  - Clinical success at 30 days (no technical failure, death, conversation to CEA, stroke, occlusion) 89.1%

### Endovascular Approach to Carotid Atherosclerotic Disease

- Roubin, et al(1996)
  - 146 procedures with 210 stents in 152 vessels
  - 63% symptomatic
  - Technical success 99%
  - Acute thrombosis 0.4%
  - Death 0.6%
  - Major stroke 1.2%
  - Minor stroke 4.8% with residual weakness in 1.2%
  - 6 month FU in 74 eligible patients
  - TIA 1.4%
  - Restenosis 5%

### LONG TERM RESULTS OF STENTING VS. CEA

- NEJM 2/18/2016
- Study showed bioequivalency between the two procedures
- 2500 patients followed for 10 years
  - Post procedural ipsilateral stroke incidence
    - 6.9% stenting group
    - 5.6% CEA group
  - No significant differences in MI
  - No significant differences in death rate

# Carotid Angioplasty and Stenting





# Carotid Stenting



# Carotid Stenting





# Stenting of Pseudoaneurysm



# Stenting of ICA Pseudoaneurysm



### Stenting Pseudoaneurysm





### GDC Embolization With Stent Rescue



## GDC Embolization With Stent Rescue



# GDC Embolization With Stent Rescue



### **Future Directions**

- Randomized controlled study comparing carotid stenting to carotid endarterectomy in low and high risk patients of all ages
- Randomized controlled study comparing aneurysm embolization with aneurysm clipping looking at anatomic as well as functional results and long term protection from hemorrhage
- Training standards to ensure that procedures are not being performed by individuals that lack the capability to manager routine procedural complications
- Better access to stroke patients within the first few hours of an ischemic event

"In times of change learners inherit the earth while the learned find themselves beautifully equipped to deal with a world that no longer exists"

Eric Hoffer

# **Endovascular Neurosurgery**

### **Otolaryngologic Applications**

Michael Horowitz, M.D. Associate Professor of Neurosurgery and Radiology University of Pittsburgh

#### Procedures Performed

- Interventional Procedures For ENT
  - Balloon test occlusions
  - Vessel sacrifice and embolization
  - Tumor and AVM embolization
  - Percutaneous Sclerotherapy
  - Chemotherapy



## **Tumor Embolization**



### **Tumor Blush Pre-Embolization**





#### Tumor Embolization-Glomus Pre Embo Post Embo



#### Glomus Vagale Embo











### **Embolization For Epistaxis**



### Embolization Facial A-V Fistula Post GSW



### Embolization Facial A-V Fistula Post GSW



#### **Trial Balloon Occlusion**











Left CCA Angiogram




#### Post Rt. ECA Embolization



#### Left CCA Post-embolization

#### Tumor encased vessels- carotid sacrifice post TBO





# Stenting of Pseudoaneurysm





# Intra-arterial Chemotherapy for Head and Neck Cancer

- 24,000 US individuals diagnosed/year
- 8,000-13,000 die annually
- Long term survival SCC 15-70%
- Surgical Procedures
  - Disfiguring
  - Disabling
  - Fewer than 30% with advanced disease cured with surgery and XRT alone

## IA Chemotherapy for Head and Neck Cancer

- Reported for last 4 decades (over 70 publications)
- Goal: maximal tumor kill with minimization of sided effects
- Head and neck cancer ideally suited for IAC
  - Locally aggressive
  - Rare widespread metastases
  - Definable and accessible arterial supply (ECA)
  - Responds to anti-neoplastic agents
  - Good delivery systems (catheters, pumps)

#### Origins of IAC for Head and Neck Cancer

- 1948- Farber used IV methotrexate for children with acute leukemia
- IVC for head and neck cancer
  - Response rates 10-57%
  - Median time to response 10 days
  - Median duration of response 3-4 months

#### Problems with IVC

- Systemic side-effects with high dose treatment
- Non-maximal delivery of drug to tumor

#### IAC History (continued)

- 1960s- combination IVC begun
  - Using drugs with non-overlapping toxicities to increase cell kill
  - Synergistic results of multiple agents
  - Minimization of tumor resistance
  - Response rate for head and neck cancer initially 12-50%

#### IAC

- Bierman (1949)- Nitrogen mustard
- Klopp (1950)
  - Inadvertent injection of nitrogen mustard into brachial artery instead of brachial vein
  - Soft tissues of arm responded with vesiculation and ulceration
  - What would happen to tumors???

#### Experimental Work

#### • Klopp

- Created tumors in rabbit testes
- Injected IA nitrogen mustard
- 7-10 days later tumor necrosis seen

#### Human Experimentation

#### • Klopp

- 7 patients with head and neck cancer
- Complete and permanent pain relief within 48 hours of first treatment
- All tumors developed central liquifaction and decreased in size
- Ulcerated squamous cell cancers became soft and flattened with three cases demonstrating near complete epithelialization

#### IAC

- Sullivan (1959)
  - Felt nitrogen mustard was too destructive of normal tissues
  - Tried IA Methotrexate
  - 66% responded

#### Subsequent work with IAC

#### • Suciu (1966)

- 12% complete remission; 38% regression
- Probert (1969): Vinblasatine + XRT
  - 69% complete regression; 23% partial regression (92% response)

#### • Auersperg (1974): IAC + XRT

• 71% showed 50-100% tumor regression (27% complete)

#### • Freckman (1972)

- 45% response rate
- 14.5 mean duration of response
  - Median survival of responders 16.9 months (4.4 months fo non responders

- Holtje (1976)
  - 90% complete remission
  - 22% had remission last 9-61 months
- Becker (1977): IAC + XRT/Surgery
  - 72% two year survival (47% prior to IAC)
  - 55% five year survival (30% before IAC)

- Matras (1978): IAC vs. IVC
  - IAC 64.5% complete or partial remission for mean duration of 9.7 months
  - IVC 20% complete or partial remission for mean duration of 3 months
  - IAC resulted in some remissions without XRT while IVC required XRT for remissions

- Moseley (1980): IAC + XRT/Surgery
  - 60% survival at 50 months
  - After median FU of 24 months only one resected patient suffered a local recurrence

#### • Baker (1981, 1982, 1983)

- IAC with implanted pump
- 4-104+ week infusions
- Advantages
  - High tumor concentrations of drug using IA route
  - Reduction in systemic toxicity using IA route
  - Ensure availability of chemotherapy to a tumor region when collateral pathways open up (tumor flow to all regions is not constant)
  - Exposure of cells throughout cell cycle and exposure of cells that are asynchronous
  - Ability for patients to undergo chemotherapy as an outpatient

#### • Straehler-Pohl (1982): Chemo +XRT/Surg

- 80% response rate
- 54% better results than with XRT alone

#### • Szepesi (1973-1982)

- 66 patients with inoperable neoplasms treated with IAC + XRT
- 17% complete remission with disease free survival 56+ months and median survival 82 months
- 48% partial remission

- Galmarini (1985)
  - 29% complete remission
  - 58% partial remission
- Inuyama (1985)
  - 47% complete response
  - 40% partial response
  - 83% thirty month survival

#### • Molinari (1985): IAC + XRT/Surgery

- IAC response
  - 74% tumor regression > 50%
  - 41% tumor regression >75%
- IAC +XRT
  - Five year survival for those in >75% group was 60%
  - 50% of those who underwent IAC and subsequent surgery were initially felt to be inoperable but became candidates when tumor size was reduced
  - Five year survival in initial inoperable group was 7% with median survival of 16 months
  - Five year survival in those undergoing IAC and planned surgery (surgical candidates prior to IAC) was 60%

## IAC (Molinari continued)

- IAC/planned surgery group had 25% local recurrence
- In the IAC/Surgery group if no local recurrences were experienced by three years, it was rare to have a local recurrence and death was secondary to a second primary tumor
- Control group having surgery and no initial IAC had 42% local recurrence

- Lee (1984) 57.1% response
- Inuyama (1986) 26% complete response; 42% partial response
- Cheung (1980s) IAC + IVC: 94% response; median response >39 months
- Lee (1989) 91% tumor response rate; 33% avoided surgery due to degree of tumor regression
- Shimuzu (1980s) 100% response rate; 20% cure rate
- Claudio (1990) 76-88% response rate for unresectable tumors; after IAC 72% became resectable
- Robbins (1992) 67% complete response rate in previusly untreated patients; 20% response rate in recurrent disease; 56% survival at 9.5 months

- Robbins (1997) Complete response with XRT+IAC in 75%
- Simunek (1993) 70% response for lingual cancer with 39% complete remission
- Korogi ((1995) 38% complete response; 54% partial response (>50% reduction in tumor size)
- Benazzo (1996) 96% complete/partial reponse
- Scheel (1996, 1999) Five year survival in inoperable cases was 39%; 50% complete remission for oral cancer
- Kerber (1997) 93% complete tumor regression
- Kovacs (1999) 80.6% partial/complete remission; 61% survival at 22 months
- **Hirai (1999)** 95% response rate with 24% complete remission; IAC+Surgery 91% three year survival; IAC + XRT 40%

- Nakasato (2000) 88% complete remission for superselective catheterization; 80% for subselective catheterization; local recurrence greater for subselective than superselective catheterization (13% v 6%)
- Fuwa (2000) 66% complete response; 36.2 month median survival; 2,3,5 year survivals 73%, 63%, 59%; mean progression free survival 25 months
- Furutani (2002) 95% response rate; three year local control rates 80%; three year progression free survival rate 53.2%; overall three year survival rate 59%
- **Robbins (2003)** IAC + XRT 80% complete response at primary site; 79% response to tumor that spread to neck; five year survival 54%

#### IAC Complications

- Stomatitis
- Tissue necrosis
- Thrombosis
- Stroke
- TIA
- Local swelling
- Tinnitus
- Impaired hearing and taste
- Throbocytopenia
- Leukopenia
- Sepsis
- Renal failure

#### IAC Complications

#### • Gemmete (2003): N=385

- 5.7% insignificant groin hematomas
- 0.5% external iliac occlusions requiring bypass
- 0.5% asymptomatic common carotid occlusions
- 10.6% chemotaxic events
  - 7.5% mucosal
  - 2.3% hematologic
  - 0.5% otologic
  - 0.25% GI
- 1.5% neurologic events (0.75% permanent, 0.75% transient)

#### IAC Complications

- Newman (2002): IAC/XRT vs. IVC/XRT
  - No differences in terms of swallowing except for less aspiration on 1-3 cc samples with IAC

#### Goals

- Develop IAC Protocols and a 5 Year Study
- Organize with PCI, ENT, and NS

# **Endovascular Neurosurgery**

# Head and Neck Tumors

Michael Horowitz, M.D. Associate Professor of Neurosurgery and Radiology University of Pittsburgh

#### Procedures Performed

- Interventional Procedures
  - Balloon test occlusions
  - Vessel sacrifice and embolization
  - Tumor embolization
  - Chemotherapy



# **Tumor Embolization**



## **Tumor Blush Pre-Embolization**




#### Tumor Embolization-Glomus Pre Embo Post Embo



#### Glomus Vagale Embo











#### **Trial Balloon Occlusion**







#### Tumor encased vessels- carotid sacrifice post TBO





# Stenting of Pseudoaneurysm



# Intra-arterial Chemotherapy for Head and Neck Cancer

- 24,000 US individuals diagnosed/year
- 8,000-13,000 die annually
- Long term survival SCC 15-70%
- Surgical Procedures
  - Disfiguring
  - Disabling
  - Fewer than 30% with advanced disease cured with surgery and XRT alone

# IA Chemotherapy for Head and Neck Cancer

- Reported for last 4 decades (over 70 publications)
- Goal: maximal tumor kill with minimization of sided effects
- Head and neck cancer ideally suited for IAC
  - Locally aggressive
  - Rare widespread metastases
  - Definable and accessible arterial supply (ECA)
  - Responds to anti-neoplastic agents
  - Good delivery systems (catheters, pumps)

### Origins of IAC for Head and Neck Cancer

- 1948- Farber used IV methotrexate for children with acute leukemia
- IVC for head and neck cancer
  - Response rates 10-57%
  - Median time to response 10 days
  - Median duration of response 3-4 months

#### Problems with IVC

- Systemic side-effects with high dose treatment
- Non-maximal delivery of drug to tumor

# IAC History (continued)

- 1960s- combination IVC begun
  - Using drugs with non-overlapping toxicities to increase cell kill
  - Synergistic results of multiple agents
  - Minimization of tumor resistance
  - Response rate for head and neck cancer initially 12-50%

#### IAC

- Bierman (1949)- Nitrogen mustard
- Klopp (1950)
  - Inadvertent injection of nitrogen mustard into brachial artery instead of brachial vein
  - Soft tissues of arm responded with vesiculation and ulceration
  - What would happen to tumors???

# Experimental Work

#### • Klopp

- Created tumors in rabbit testes
- Injected IA nitrogen mustard
- 7-10 days later tumor necrosis seen

#### Human Experimentation

#### • Klopp

- 7 patients with head and neck cancer
- Complete and permanent pain relief within 48 hours of first treatment
- All tumors developed central liquifaction and decreased in size
- Ulcerated squamous cell cancers became soft and flattened with three cases demonstrating near complete epithelialization

#### IAC

- Sullivan (1959)
  - Felt nitrogen mustard was too destructive of normal tissues
  - Tried IA Methotrexate
  - 66% responded

## Subsequent work with IAC

#### • Suciu (1966)

- 12% complete remission; 38% regression
- Probert (1969): Vinblasatine + XRT
  - 69% complete regression; 23% partial regression (92% response)

#### • Auersperg (1974): IAC + XRT

• 71% showed 50-100% tumor regression (27% complete)

#### • Freckman (1972)

- 45% response rate
- 14.5 mean duration of response
  - Median survival of responders 16.9 months (4.4 months fo non responders

- Holtje (1976)
  - 90% complete remission
  - 22% had remission last 9-61 months
- Becker (1977): IAC + XRT/Surgery
  - 72% two year survival (47% prior to IAC)
  - 55% five year survival (30% before IAC)

- Matras (1978): IAC vs. IVC
  - IAC 64.5% complete or partial remission for mean duration of 9.7 months
  - IVC 20% complete or partial remission for mean duration of 3 months
  - IAC resulted in some remissions without XRT while IVC required XRT for remissions

- Moseley (1980): IAC + XRT/Surgery
  - 60% survival at 50 months
  - After median FU of 24 months only one resected patient suffered a local recurrence

#### • Baker (1981, 1982, 1983)

- IAC with implanted pump
- 4-104+ week infusions
- Advantages
  - High tumor concentrations of drug using IA route
  - Reduction in systemic toxicity using IA route
  - Ensure availability of chemotherapy to a tumor region when collateral pathways open up (tumor flow to all regions is not constant)
  - Exposure of cells throughout cell cycle and exposure of cells that are asynchronous
  - Ability for patients to undergo chemotherapy as an outpatient

#### • Straehler-Pohl (1982): Chemo +XRT/Surg

- 80% response rate
- 54% better results than with XRT alone

#### • Szepesi (1973-1982)

- 66 patients with inoperable neoplasms treated with IAC + XRT
- 17% complete remission with disease free survival 56+ months and median survival 82 months
- 48% partial remission

- Galmarini (1985)
  - 29% complete remission
  - 58% partial remission
- Inuyama (1985)
  - 47% complete response
  - 40% partial response
  - 83% thirty month survival

#### • Molinari (1985): IAC + XRT/Surgery

- IAC response
  - 74% tumor regression > 50%
  - 41% tumor regression >75%
- IAC +XRT
  - Five year survival for those in >75% group was 60%
  - 50% of those who underwent IAC and subsequent surgery were initially felt to be inoperable but became candidates when tumor size was reduced
  - Five year survival in initial inoperable group was 7% with median survival of 16 months
  - Five year survival in those undergoing IAC and planned surgery (surgical candidates prior to IAC) was 60%

# IAC (Molinari continued)

- IAC/planned surgery group had 25% local recurrence
- In the IAC/Surgery group if no local recurrences were experienced by three years, it was rare to have a local recurrence and death was secondary to a second primary tumor
- Control group having surgery and no initial IAC had 42% local recurrence

- Lee (1984) 57.1% response
- Inuyama (1986) 26% complete response; 42% partial response
- Cheung (1980s) IAC + IVC: 94% response; median response >39 months
- Lee (1989) 91% tumor response rate; 33% avoided surgery due to degree of tumor regression
- Shimuzu (1980s) 100% response rate; 20% cure rate
- Claudio (1990) 76-88% response rate for unresectable tumors; after IAC 72% became resectable
- Robbins (1992) 67% complete response rate in previusly untreated patients; 20% response rate in recurrent disease; 56% survival at 9.5 months

- Robbins (1997) Complete response with XRT+IAC in 75%
- Simunek (1993) 70% response for lingual cancer with 39% complete remission
- Korogi ((1995) 38% complete response; 54% partial response (>50% reduction in tumor size)
- Benazzo (1996) 96% complete/partial reponse
- Scheel (1996, 1999) Five year survival in inoperable cases was 39%; 50% complete remission for oral cancer
- Kerber (1997) 93% complete tumor regression
- Kovacs (1999) 80.6% partial/complete remission; 61% survival at 22 months
- **Hirai (1999)** 95% response rate with 24% complete remission; IAC+Surgery 91% three year survival; IAC + XRT 40%

- Nakasato (2000) 88% complete remission for superselective catheterization; 80% for subselective catheterization; local recurrence greater for subselective than superselective catheterization (13% v 6%)
- Fuwa (2000) 66% complete response; 36.2 month median survival; 2,3,5 year survivals 73%, 63%, 59%; mean progression free survival 25 months
- Furutani (2002) 95% response rate; three year local control rates 80%; three year progression free survival rate 53.2%; overall three year survival rate 59%
- **Robbins (2003)** IAC + XRT 80% complete response at primary site; 79% response to tumor that spread to neck; five year survival 54%

# IAC Complications

- Stomatitis
- Tissue necrosis
- Thrombosis
- Stroke
- TIA
- Local swelling
- Tinnitus
- Impaired hearing and taste
- Throbocytopenia
- Leukopenia
- Sepsis
- Renal failure

## IAC Complications

#### • Gemmete (2003): N=385

- 5.7% insignificant groin hematomas
- 0.5% external iliac occlusions requiring bypass
- 0.5% asymptomatic common carotid occlusions
- 10.6% chemotaxic events
  - 7.5% mucosal
  - 2.3% hematologic
  - 0.5% otologic
  - 0.25% GI
- 1.5% neurologic events (0.75% permanent, 0.75% transient)

#### IAC Complications

- Newman (2002): IAC/XRT vs. IVC/XRT
  - No differences in terms of swallowing except for less aspiration on 1-3 cc samples with IAC

#### Goals

- Develop IAC Protocols and a 5 Year Study
- Organize with PCI, ENT, and NS