

SPONTANEOUS INTRACRANIAL HEMORRHAGE

MICHAEL HOROWITZ, MD, FAANS, CAST

HEMORRHAGE LOCATIONS

- 50% deep
- 35% lobar
- 10% cerebellar
- 6% brain stem

GENERAL OUTCOMES

- ICH causes 10-15% of initial strokes
- 30 day mortality 35-52% with half of these deaths occurring within the first 2 days of onset
- 50% of deaths occur in first 48 hours
- Death by location at 12 months
 - 51% for deep
 - 57% for lobar
 - 42% for cerebellar
 - 65% for brain stem
- 20% of all ICH victims are independent at 6 months

OUTCOME PREDICTORS

- Predictors for death at 30 days
 - Large Hematoma volume
 - Hydrocephalus
 - Non-cortical location
 - High fibrinogen levels
 - Poor GCS

OUTCOME PREDICTOR

- Strongest predictor of 30-day mortality is hematoma volume
- Volume >60cc and GCS <8
 - 30-day mortality is 91%
- Volume <30 cc and GCS >9
 - 30-day mortality is 19%
- Volume greater than 30 cc predicts inability to function independently at 30 days

CLINICAL PRESENTATION

- Focal neurologic deficit
- Headache
- Emesis
- Elevated blood pressure
- Headache

INITIAL EVALUATION

- Clinical Information
- Signs and symptoms
- Time of onset
- Patient age
- Past medical history
- Medications (anticoagulation)
- Family history
- Illicit drugs (cocaine, stimulants, IVDA)

INITIAL EVALUATION

- Physical examination
- Imaging
 - -CT
 - MRI
 - Angiography
- Laboratory testing
 - Cell counts (platelet count)
 - Coagulation studies (PT, PTT, INR)
 - Toxicity screens
 - Pregnancy test

USEFUL SCALES AND SCORING SYSTEMS

- ABC/2 Formula
 - Permits estimation of hematoma size if CT scanner software cannot do calculation
- Intracerebral Hemorrhage (ICH) Score
 - Estimates mortality in ICH

OVERALL TREATMENT GOALS

- Reduce or eliminate bleeding
- Remove blood if necessary
- Control intracranial pressure
- Supportive care
 - Oxygenation
 - Maintain CPP
 - Nutrition
 - Prevention DVT
 - Seizure control
 - Electrolyte regulation
 - Pressure sore prevention
 - Management of infection
 - Fluid management
 - Therapy with early mobilization

- Steroids
 - No benefits in randomized studies
- Recombinant Activated Factor 7
 - Stimulates thrombin formation and activates factor X on platelets. Thrombin converts fibrinogen to fibrin which stabilizes clot.
 - Dose 90 micrograms/kg
 - Half-life 2.6 hours
 - Randomized studies have shown improved survival and outcomes in those treated with F7

- Blood Pressure Management Questions
 - Does elevated blood pressure cause increased bleeding or result from increased bleeding?
 - Does pharmacologic reduction of elevated blood pressure detrimentally reduce cerebral perfusion pressure (MAP – ICP = CPP)?

- Blood Pressure Management
 - For primary ICH there is minimal evidence for specific blood pressure levels
 - General goal is to keep CPP >60-70 mm Hg

- Hyperosmolar Treatment
 - No evidence that use of mannitol improves outcomes

- Intracranial Pressure (ICP) Management
 - IV Hyperosmolar agents (mannitol, urea)
 - Hyperventilation (reduces PaCO2 which reduces arterial dilatation and cerebral blood flow (CBF) and cerebral blood volume (CBV)
 - BP reduction
 - Barbiturates (reduce metabolic brain activity which reduces CBF)
 - Systemic cooling (reduces metabolism and CBF)
 - Each of these methods has benefits and detriments
 - Elevation of the head of bed (improves venous drainage)
 - Cerebrospinal fluid drainage
 - Pharmacologic paralysis
- NO RANDOMIZED STUDY HAS DEMONSTRATED THE EFFICACY OF MONITORING ICP AND CPP IN THE SETTING OF ICH

- High blood glucose upon presentation predifts an increased risk of 30 day mortlaity
- Unclear if elevated glucose is cause or effect
- May increase brain edema and cell death

Seizures

- 28% incidence of seizures (convulsive and nonconvulsive) in first 30 days
- Seizures more common with lobar hemorrhage
- Prophylaxis with antioconvulsants should be considered

- Temperature Management
 - Aim for normothermic temperatures
 - No clear evidence that hypothermia is beneficial

RECOMMENDATIONS BASED ON EVIDENCE

Class I

- Benefits >>> Risks
- Treatment/Procedure should be performed
- "should; is recommended; is indicated; is useful/effective/beneficial"

Class IIa

- Benefits >> Risks
- Reasonable to provide treatment but additional studies needed
- "is reasonable; can be useful/effective/beneficial; is probably recommended or indicated"

Class IIb

- Benefits > Risks
- Procedure may be considered. More data needed
- "may be considered; may be reasonable; effectiveness in uncertain"

Class III

- − Risks ≥ Benefits
- No additional studies needed
- "is not recommended; is not indicated; is not useful; may be harmful"

EVIDENCE SUPPORT

Class I

- Early recognition improves outcomes
- Patient should be managed in an ICU
- Treat clinical seizures
- Fever should be treated
- Early mobilization is beneficial
- Use intemittent compression stockings to help prevent DVT in those with hemiparesis/hemiplegia
- Treat hypertension to avoid recurrent bleeds
- Protamine used be used to reverse heparin associated ICH
- Warfarin should be reversed with IV vitamin K, FFP and other factors as indicated

EVIDENCE SUPPORT

- Class IIa
 - Treat elevated ICP and monitor BP to maintain CPP70 mm Hg
 - Persistent hyperglycemia >140 mg/dL during first
 24 hours of stroke is associated with poor outcomes and should be treated

EVIDENCE SUPPORT

Class IIb

- Administer Factor 7 within first 3-4 hours to slow progression of bleeding
- May use low dose subq heparin in patients with hemiplegia 2-3 days after cessation of bleeding
- Inset IVC filter in patients with DVT or PE
- Long term antithrombotic therapy may be used several weeks after the bleed taking into consideration likelihoood of a recurrent bleed based on underlying etiology and risks
- Reversal factors other than FFP may be beneficial but increase the risk of thromboembolism
- For patients with high risk of rebleeding, antipltelets may be better option than warfarin.
- For patients at a very high risk of thromboembolism, may restart warfarin 7-10 days after the bleed

SURGICAL MANAGEMENT

- Class I
 - Cerebellar hematomas >3 cm diameter should have surgery ASAP if they are deteriorating, have brainstem compression, have hydrocephalus

SURGICAL MANAGEMENT

Class II

- Use of thrombolytics into the clot cavity to ease evacuation is not of benefit due to risks of rebleeding
- Usefulness of minimally invasive approaches to clot evacuation are of unproven benefit
- Lobar clot evacuation via craniotomy especially in patients that are worsening might be of benefit and/or hematomas that are within 1 cm of the cortical surface (may speed recovery)
- Surgical evacuation is best done within 12 hours although ultraearly surgery may have a higher risk of rebleeding
- Decompressive craniectomy is of unknown benefit

SURGICAL MANAGEMENT

Class III

- Routine evacuation of supratentorial hematomas within 96 hours of bleed is not recommended (evacuation is best based on exam)
- Delayed clot evacuation by craniotomy offers little if any benefit and may worsen outcome by further damaging functional or recovering brain

PREVENTION OF RECURRENCE

- Class I
 - Treat hypertension
 - Eliminate smoking, heavy alcohol use, cocaine use